Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

Functional differences in airway dendritic cells determine susceptibility to IgE-sensitization

Respiratory IgE-sensitization to innocuous antigens increases the risk for developing diseases such as allergic asthma.

Citation:
 Leffler J, Mincham KT, Mok D, Blank F, Holt PG, Stumbles PA, Strickland DH. Functional differences in airway dendritic cells determine susceptibility to IgE-sensitization. Immunol Cell Biol. 2018;96(3):316-29.

Keywords: 
Adaptive immunity; CD4-positive T cells; T cells; allergy; antigen presentation; dendritic cells; immunological disorders; immunology; inflammatory diseases; innate immune cells; lymphocytes; mucosal immunology; regulatory T cells

Abstract:
Respiratory IgE-sensitization to innocuous antigens increases the risk for developing diseases such as allergic asthma. Dendritic cells (DC) residing in the airways orchestrate the immune response following antigen exposure and their ability to sample and present antigens to naïve T cells in airway draining lymph nodes contributes to allergen-specific IgE-sensitization. In order to characterize inhaled antigen capture and presentation by DC subtypes in vivo, we used an adjuvant-free respiratory sensitization model using two genetically distinct rat strains, one of which is naturally resistant and the other naturally susceptible to allergic sensitization. Upon multiple exposures to ovalbumin (OVA), the susceptible strain developed OVA-specific IgE and airway inflammation, whereas the resistant strain did not. Using fluorescently tagged OVA and flow cytometry, we demonstrated significant differences in antigen uptake efficiency and presentation associated with either IgE-sensitization or resistance to allergen exposures in respective strains. We further identified CD4+ conventional DC (cDC) as the subset involved in airway antigen sampling in both strains, however, CD4+ cDC in the susceptible strain were less efficient in OVA sampling and displayed increased MHC-II expression compared with the resistant strain. This was associated with generation of an exaggerated Th2 response and a deficiency of airway regulatory T cells in the susceptible strain. These data suggest that subsets of cDC are able to induce either sensitization or resistance to inhaled antigens as determined by genetic background, which may provide an underlying basis for genetically determined susceptibility to respiratory allergic sensitization and IgE production in susceptible individuals.