Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

Search

Research

Geospatial modelling for malaria risk stratification and intervention targeting for low-endemic countries

Ewan Mark Punam Susan Tasmin Cameron Connell Amratia Rumisha Symons EC MC PA SR TS BSc PhD MSc PhD PhD (Biostatistics) Director of Malaria Risk

Research

A Maximum Entropy Model of the Distribution of Dengue Serotype in Mexico

Pathogen strain diversity is an important driver of the trajectory of epidemics. The role of bioclimatic factors on the spatial distribution of dengue virus serotypes has, however, not been previously studied. Hence, we developed municipality-scale environmental suitability maps for the four dengue virus serotypes using maximum entropy modeling.

Research

The Centres for Disease Control light trap and the human decoy trap compared to the human landing catch for measuring Anopheles biting in rural Tanzania

Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives.

Research

Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in Tanzania

In recent years there have been reports of viral haemorrhagic fever (VHF) epidemics in sub-Saharan Africa where malaria is endemic. VHF and malaria have overlapping clinical presentations making differential diagnosis a challenge.

Research

Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania

This study was conducted to determine the seroprevalence and risk factors of chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses in Tanzania.

Research

Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventions

Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach.

Research

Modelling temperature-driven changes in species associations across freshwater communities

Due to global climate change–induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species’ distributions.

Research

Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria

Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator.

Research

Spatial distribution of rotavirus immunization coverage in Ethiopia: a geospatial analysis using the Bayesian approach

Rotavirus causes substantial morbidity and mortality every year, particularly among under-five children. Despite Rotavirus immunization preventing severe diarrheal disease in children, the vaccination coverage remains inadequate in many African countries including Ethiopia.

Research

WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395

We present the Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pre-pilot observations of two 'dark' H i sources (with H i masses of a few times 108 {M}_\odot and no known stellar counterpart) that reside within 363 kpc of NGC 1395, the most massive early-type galaxy in the Eridanus group of galaxies.