Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Global change, climate change, and asthma in children: Direct and indirect effects - A WAO Pediatric Asthma Committee Report

The twenty-first century has seen a fundamental shift in disease epidemiology with anthropogenic environmental change emerging as the likely dominant factor affecting the distribution and severity of current and future human disease. This is especially true of allergic diseases and asthma with their intimate relationship with the natural environment.

Research

Reduced Type-I Interferon by Plasmacytoid Dendritic Cells and Asthma in School-Aged Children

Allergic sensitization and reduced ability to respond to viral infections may contribute to virus-induced wheeze and asthma development in young children. Plasmacytoid dendritic cells (pDC) are rare immune cells that produce type I interferons (IFN-I) and play a key role in orchestrating immune responses against viruses. 

Research

ACE2 expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma

COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD. We obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC.

Research

Identifying pediatric lung disease: A comparison of forced oscillation technique outcomes

These findings suggest the utility of specific FOT outcomes is dependent on the respiratory disease being assessed

Research

Basophil counts in PBMC populations during childhood acute wheeze/asthma are associated with future exacerbations

Our findings suggest that the proportion of degranulated basophils can also be associated with recurrent exacerbations

Research

Insights into respiratory disease through bioinformatics

Here, we review the basic concepts in bioinformatics and genomic data analysis and illustrate the application of these tools to further our understanding of lung diseases

Research

Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis

The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis.

Research

Could home-based FeNO measurements breathe new life into asthma management?

Developing a FeNO test that is affordable enough to allow daily measurements, patients will be able to access quantifiable data to assist them to monitor their asthma

Research

Pharmacological ablation of the airway smooth muscle layer—Mathematical predictions of functional improvement in asthma

Findings provide further proof of concept that pharmacological targeting of airway smooth muscle thickness will be beneficial and may be facilitated by azithromycin