Skip to content
The Kids Research Institute Australia logo
Donate

Search

Long-term exposure of mice to 890 ppm atmospheric CO2 alters growth trajectories and elicits hyperactive behaviours in young adulthood

Atmospheric carbon dioxide (CO2) levels are currently at 418 parts per million (ppm), and by 2100 may exceed 900 ppm. The biological effects of lifetime exposure to CO2 at these levels is unknown. Previously we have shown that mouse lung function is altered by long-term exposure to 890 ppm CO2. Here, we assess the broader systemic physiological responses to this exposure.

In Vitro primary human airway epithelial whole exhaust exposure

The method outlined in this article is a customization of the whole exhaust exposure method generated by Mullins et al. (2016) using reprogrammed primary human airway epithelial cells as described by Martinovich et al. (2017). It has been used successfully to generate recently published data (Landwehr et al. 2021). The goal was to generate an exhaust exposure model where exhaust is collected from a modern engine, real-world exhaust concentrations are used and relevant tissues exposed to assess the effects of multiple biodiesel exposures.

Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model

Biodiesel is promoted as a sustainable replacement for commercial diesel. Biodiesel fuel and exhaust properties change depending on the base feedstock oil/fat used during creation. The aims of this study were, for the first time, to compare the exhaust exposure health impacts of a wide range of biodiesels made from different feedstocks and relate these effects with the corresponding exhaust characteristics.

Editorial overview: The physiology of the diseased lung

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Exposomes and metabolic health through a physical activity lens: a narrative review

In this narrative review, we provide an overview of the role of physical activity as part of differing exposomes (our combined non-genetic exposures from conception onwards) and environmental influences on metabolic health. We discuss 'beneficial' exposomes (green/natural outdoor spaces, sun exposure, healthy diets and features of built environments) that could synergise with physical activity to prevent metabolic dysfunction, particularly that related to lifestyle diseases of obesity, type 2 diabetes and metabolic syndrome.

Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability

HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via antiviral response of IL-15

Biodiesel exhaust: The need for a systematic approach to health effects research

Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol...

Respiratory toxicology of e-cigarettes: effect of vapours on lung function and inflammation

Electronic cigarettes (ECs) have been rapidly gaining ground on conventional cigarettes due to their efficiency in ceasing or reducing tobacco consumption,...

Persistent and compartmentalised disruption of dendritic cell subpopulations in the lung following influenza A virus infection

Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung...