Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

CDKL5 deficiency disorder: clinical features, diagnosis, and management

CDKL5 deficiency disorder (CDD) was first identified as a cause of human disease in 2004. Although initially considered a variant of Rett syndrome, CDD is now recognised as an independent disorder and classified as a developmental epileptic encephalopathy.

Research

AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma

The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma.

Research

Anesthetic Exposure During Childhood and Neurodevelopmental Outcomes: A Systematic Review and Meta-analysis

Clinical studies of neurodevelopmental outcomes after anesthetic exposure have evaluated a range of outcomes with mixed results.

Research

Exiting the Anthropocene: Achieving personal and planetary health in the 21st century

Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies.

Research

Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro

Vaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology enables characterization of mechanisms of action, these tools have yet to be applied to infants, who are at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms.

Research

Clinical practice guidelines for paediatric X-linked hypophosphataemia in the era of burosumab

X-linked hypophosphataemia (XLH), the most common inherited form of rickets, is caused by a PHEX gene mutation that leads to excessive serum levels of fibroblast growth factor 23 (FGF23). This leads to clinical manifestations such as rickets, osteomalacia, pain, lower limb deformity and overall diminished quality of life.

Research

Potentially Pathogenic Organisms in Stools and Their Association With Acute Diarrheal Illness in Children Aged <2 Years

Acute diarrheal illness (ADI) causes a substantial disease burden in high-income countries. We investigated associations between potentially pathogenic organisms in stools and ADI by polymerase chain reaction (PCR) in Australian children aged <2 years.

Research

Host-dependent resistance of Group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity.

Research

Standardization of Epidemiological Surveillance of Acute Poststreptococcal Glomerulonephritis

Acute poststreptococcal glomerulonephritis (APSGN) is an immune complex-induced glomerulonephritis that develops as a sequela of streptococcal infections. This article provides guidelines for the surveillance of APSGN due to group A Streptococcus (Strep A). The primary objectives of APSGN surveillance are to monitor trends in age- and sex-specific incidence, describe the demographic and clinical characteristics of patients with APSGN, document accompanying risk factors, then monitor trends in frequency of complications, illness duration, hospitalization rates, and mortality.

Research

Potassium Ion Channels in Malignant Central Nervous System Cancers

Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance.