Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Mapping tuberculosis prevalence in Ethiopia using geospatial meta-analysis\

Reliable and detailed data on the prevalence of tuberculosis (TB) with sub-national estimates are scarce in Ethiopia. We address this knowledge gap by spatially predicting the national, sub-national and local prevalence of TB, and identifying drivers of TB prevalence across the country.

Research

Less is more: repellent-treated fabric strips as a substitute for full screening of open eave gaps for indoor and outdoor protection from malaria mosquito bites

Providing protection from malaria vector bites, both indoors and outdoors, is crucial to curbing malaria parasite transmission. Screening of house entry points, especially with incorporated insecticides, confers significant protection but remains a costly and labour-intensive application. Use of spatial repellents has shown promise in creating areas of protection in peri-domestic areas.

Research

Short-course, high-dose primaquine regimens for the treatment of liver-stage vivax malaria in children

To assess the pharmacokinetics, safety, and tolerability of two high-dose, short-course primaquine (PQ) regimens compared with standard care in children with Plasmodium vivax infections.

Research

Characterizing human movement patterns using GPS data loggers in an area of persistent malaria in Zimbabwe along the Mozambique border

Human mobility is a driver for the reemergence or resurgence of malaria and has been identified as a source of cross-border transmission. However, movement patterns are difficult to measure in rural areas where malaria risk is high. In countries with malaria elimination goals, it is essential to determine the role of mobility on malaria transmission to implement appropriate interventions.

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

Spatio-temporal spread of artemisinin resistance in Southeast Asia

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially.

Research

Genetic variants of TLR4, including the novel variant, rs5030719, and related genes are associated with susceptibility to clinical malaria in African children

Malaria is a deadly disease caused by Plasmodium spp. Several blood phenotypes have been associated with malarial resistance, which suggests a genetic component to immune protection.

Research

Projected health impact of post-discharge malaria chemoprevention among children with severe malarial anaemia in Africa

Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) with dihydroartemisinin-piperaquine reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0-5-year old children after hospitalised SMA.

News & Events

$12 million grant puts WA research team in the hot seat to help wipe out malaria forever

A world-leading research team built to tackle malaria has relocated from Oxford University to Western Australia to take advantage of the state’s growing big data talent pool.

Research

Identifying individual, household and environmental risk factors for malaria infection on Bioko Island to inform interventions

Since 2004, malaria transmission on Bioko Island has declined significantly as a result of the scaling-up of control interventions. The aim of eliminating malaria from the Island remains elusive, however, underscoring the need to adapt control to the local context. Understanding the factors driving the risk of malaria infection is critical to inform optimal suits of interventions in this adaptive approach.