Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

Search

Research

ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome requires separate enzymatic activities that can sterically compete, suggesting a life-long trade-off between these two processes.

Research

OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological data

Advances in omics technologies have generated exponentially larger volumes of biological data; however, their analyses and interpretation are limited to computationally proficient scientists. We created OmicsVolcano, an interactive open-source software tool to enable visualization and exploration of high-throughput biological data, while highlighting features of interest using a volcano plot interface. In contrast to existing tools, our software and user-interface design allow it to be used without requiring any programming skills to generate high-quality and presentation-ready images.

Research

Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in culture

The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties.

Research

Mutational rescue of the activity of high-fidelity Cas9 enzymes

Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. 

Research

Frankenstein Cas9: engineering improved gene editing systems

The discovery of CRISPR-Cas9 and its widespread use has revolutionised and propelled research in biological sciences.

Research

Molecular basis of translation termination at noncanonical stop codons in human mitochondria

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons.

Research

Multi-omic profiling reveals an RNA processing rheostat that predisposes to prostate cancer

Prostate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility; however, mechanistic and functional validation of these mutations is lacking.

Research

Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan

Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone or hyper-accurate mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner.

Research

Investigating Mitochondrial Transcriptomes and RNA Processing Using Circular RNA Sequencing

Transcriptomic technologies have revolutionized the study of gene expression and RNA biology. Different RNA sequencing methods enable the analyses of diverse species of transcripts, including their abundance, processing, stability, and other specific features. Mitochondrial transcriptomics has benefited from these technologies that have revealed the surprising complexity of its RNAs. Here we describe a method based upon cyclization of mitochondrial RNAs and next generation sequencing to analyze the steady-state levels and sizes of mitochondrial RNAs, their degradation products, as well as their processing intermediates by capturing both 5' and 3' ends of transcripts.