Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Using Hawkes Processes to model imported and local malaria cases in near-elimination settings

Developing new methods for modelling infectious diseases outbreaks is important for monitoring transmission and developing policy. In this paper we propose using semi-mechanistic Hawkes Processes for modelling malaria transmission in near-elimination settings. Hawkes Processes are well founded mathematical methods that enable us to combine the benefits of both statistical and mechanistic models to recreate and forecast disease transmission beyond just malaria outbreak scenarios.

Research

Childhood-onset type 1 diabetes in Western Australia: An update on incidence and temporal trends from 2001 to 2022

To determine the incidence and incidence trends over 2001-2022 of childhood-onset type 1 diabetes (T1D) in Western Australia and assess the impact of the COVID-19 pandemic.

Research

DETECT Schools Study Protocol: A Prospective Observational Cohort Surveillance Study Investigating the Impact of COVID-19 in Western Australian Schools

Amidst the evolving COVID-19 pandemic, understanding the transmission dynamics of the SARS-CoV-2 virus is key to providing peace of mind for the community and informing policy-making decisions. While available data suggest that school-aged children are not significant spreaders of SARS-CoV-2, the possibility of transmission in schools remains an ongoing concern, especially among an aging teaching workforce. Even in low-prevalence settings, communities must balance the potential risk of transmission with the need for students' ongoing education.

Research

WALLABY pre-pilot survey: H i content of the Eridanus supergroup

We present observations of the Eridanus supergroup obtained with the Australian Square Kilometre Array Pathfinder (ASKAP) as part of the pre-pilot survey for the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY).

Research

Malaria Atlas Project (MAP)

The Malaria Atlas Project (MAP) aims to disseminate free, accurate and up-to-date geographical information on malaria and associated topics. Our mission is to generate new and innovative methods to map malaria, to produce a comprehensive range of maps and estimates that will support effective planning of malaria

Research

Malaria components of the Global Burden of Disease study

Adam Dan Francesca Susan Saddler Weiss Sanna Rumisha PhD PhD Dr PhD (Biostatistics) Research Officer Honorary Research Fellow Research Officer

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

Challenges in the case-based surveillance of infectious diseases

To effectively inform infectious disease control strategies, accurate knowledge of the pathogen's transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance.

Research

A malaria seasonality dataset for sub-Saharan Africa

Malaria imposes a significant global health burden and remains a major cause of child mortality in sub-Saharan Africa. In many countries, malaria transmission varies seasonally. The use of seasonally-deployed interventions is expanding, and the effectiveness of these control measures hinges on quantitative and geographically-specific characterisations of malaria seasonality.

Research

Spatio-temporal spread of artemisinin resistance in Southeast Asia

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially.